Numerical simulations of holographic spatiospectral traces of spatiotemporally distorted ultrashort laser pulses.

نویسندگان

  • Zhe Guang
  • Michelle Rhodes
  • Rick Trebino
چکیده

We simulate traces for a catalog of spatiotemporally complex pulses measured using a single-shot complete spatiotemporal pulse-measurement technique we recently developed, called Spatially and Temporally Resolved Intensity and Phase Evaluation Device: Full Information from a Single Hologram (STRIPED FISH). The only such technique ever developed to our knowledge, STRIPED FISH measures the complete spatiotemporal intensity I(x,y,t) and phase ϕ(x,y,t) of an arbitrary laser pulse using an experimentally recorded trace consisting of multiple digital holograms, one for each frequency present in the pulse. To understand the effects of various spatiotemporal distortions on the STRIPED FISH trace, we numerically investigate STRIPED FISH trace features for a catalog of pulses, including the spatially and temporally transform-limited pulse, temporal and spatial double pulses, spherically focusing and diverging pulses, self-phase modulated and self-focusing pulses, spatiotemporally coupled pulses, and pulses with complex structures. As a practical example, we also analyze an experimentally recorded trace of a focusing pulse with spatial chirp. Overall, we find that, from STRIPED FISH's informative trace, significant spatiotemporal characteristics of the unknown pulse can be immediately recognized from the camera frame. This, coupled with its simple pulse-retrieval algorithm, makes STRIPED FISH an excellent technique for measuring and monitoring ultrafast laser sources.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of Ultrashort-Laser Pulses with Induced Undercritical Plasmas in Fused Silica

Ultrafast light-material interactions near the damage threshold are often studied using postmortem analysis of damaged dielectric materials. Corresponding simulations of ultrashort pulse propagation through the material are frequently used to gain additional insight into the processes leading to such damage. However, comparison between such experimental and numerical results is often qualitativ...

متن کامل

Femtosecond spectral pulse shaping with holographic gratings recorded in photopolymerizable glasses.

The majority of the applications of ultrashort laser pulses require a control of its spectral bandwidth. In this paper we show the capability of volume phase holographic gratings recorded in photopolymerizable glasses for spectral pulse reshaping of ultrashort laser pulses originated in an Amplified Ti: Sapphire laser system and its second harmonic. Gratings with high laser induce damage thresh...

متن کامل

Space-based Femtosecond Laser Filamentation

Contents 1 INTRODUCTION 2 2 Model for numerical simulations of filamentation from orbit 5 2. 5 Conclusions 23 6 Next steps 24 A Full theoretical model of vertical propagation of ultrashort laser pulses 25 A.

متن کامل

Duration of ultrashort pulses in the presence of spatio-temporal coupling.

We report on a simple method allowing one to decompose the duration of arbitrary ultrashort light pulses, potentially distorted by space-time coupling, into four elementary durations. Such a decomposition shows that, in linear optics, a spatio-temporal pulse can be stretched with respect to its Fourier limit by only three independent phenomena: nonlinear frequency dependence of the spectral pha...

متن کامل

Efficient angular dispersion compensation in holographic generation of intense ultrashort paraxial beam modes.

We experimentally demonstrate that small misalignments of the pulse stretcher or compressor of our chirped-pulse-amplification laser can precompensate for angular chirp when producing ultrashort paraxial beam modes with holographic gratings. Using this approach we can eliminate one of the two gratings needed in our 2f-2f setup [Mariyenko, Opt. Express 13, 7599 (2005)]. This allows for up to an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied optics

دوره 54 22  شماره 

صفحات  -

تاریخ انتشار 2015